Singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel
نویسندگان
چکیده
In a recent paper [3], Y. Cao and Y. Xu established the Galerkin method for weakly singular Fredholm integral equations that preserves the singularity of the solution. Their Galerkin method provides a numerical solution that is a linear combination of a certain class of basis functions which includes elements that reflect the singularity of the solution. The purpose of this paper is to extend the result of Cao and Xu and to establish singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. The iterated singularity preserving Galerkin method is also discussed.
منابع مشابه
CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کاملSuperconvergence Results for the Iterated Discrete Legendre Galerkin Method for Hammerstein Integral Equations
In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equation with a smooth kernel. Using a sufficiently accurate numerical quadrature rule, we obtain super-convergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and L-norm. Numerical examples are given to illustrate the theoretical results.
متن کاملSuperconvergence of Galerkin Solutions for Hammerstein Equations
In the present paper, we discuss the superconvergence of the interpolated Galerkin solutions for Hammerstein equations. With the interpolation post-processing for the Galerkin approximation xh, we get a higher order approximation I 2r−1 2h xh, whose convergence order is the same as that of the iterated Galerkin solution. Such an interpolation post-processing method is much simpler than the iter...
متن کاملSuperconvergence of the Iterated Galerkin Methods for Hammerstein Equations
In this paper, the well known iterated Galerkin method and iterated Galerkin-Kantorovich regularization method for approximating the solution of Fredholm integral equations of the second kind are generalized to Hammerstein equations with smooth and weakly singular kernels. The order of convergence of the Galerkin method and those of superconvergence of the iterated methods are analyzed. Numeric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 9 شماره
صفحات -
تاریخ انتشار 1998